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Higher Engineering Mathematics

Now in its eighth edition, Higher Engineering Mathe-
matics has helped thousands of students succeed in their
exams. Theory is kept to a minimum,with the emphasis
firmly placed on problem-solving skills, making this a
thoroughly practical introduction to the advanced engi-
neering mathematics that students need to master. The
extensive and thorough topic coverage makes this an
ideal text for upper-level vocational courses and for
undergraduate degree courses. It is also supported by
a fully updated companion website with resources for
both students and lecturers. It has full solutions to all
2,000 further questions contained in the 277 practice
exercises.

John Bird, BSc (Hons), CMath, CEng, CSci, FITE,
FIMA, FCollT, is the former Head of Applied Electron-
ics in the Faculty of Technology at Highbury College,
Portsmouth, UK. More recently he has combined free-
lance lecturing and examining, and is the author of
over 130 textbooks on engineering and mathemati-
cal subjects with worldwide sales of over one mil-
lion copies. He is currently lecturing at the Defence
School of Marine Engineering in the Defence Col-
lege of Technical Training at HMS Sultan, Gosport,
Hampshire, UK.

Why is knowledge of mathematics important in engineering?

A career in any engineering or scientific field will
require both basic and advanced mathematics. Without
mathematics to determine principles, calculate dimen-
sions and limits, explore variations, prove concepts, and
so on, there would be no mobile telephones, televisions,
stereo systems, videogames,microwaveovens, comput-
ers, or virtually anything electronic. There would be no
bridges, tunnels, roads, skyscrapers, automobiles, ships,
planes, rockets or most things mechanical. There would
be no metals beyond the common ones, such as iron
and copper, no plastics, no synthetics. In fact, society
would most certainly be less advanced without the use
of mathematics throughout the centuries and into the
future.

Electrical engineers require mathematics to design,
develop, test, or supervise themanufacturing and instal-
lation of electrical equipment, components, or systems
for commercial, industrial, military, or scientific use.

Mechanical engineers require mathematics to perform
engineering duties in planning and designing tools,
engines, machines, and other mechanically functioning
equipment; they oversee installation, operation,mainte-
nance, and repair of such equipment as centralised heat,
gas, water, and steam systems.

Aerospace engineers require mathematics to perform
a variety of engineering work in designing, construct-
ing, and testing aircraft, missiles, and spacecraft; they
conduct basic and applied research to evaluate adapt-
ability of materials and equipment to aircraft design and
manufacture and recommend improvements in testing
equipment and techniques.

Nuclear engineers require mathematics to conduct
research on nuclear engineering problemsor apply prin-
ciples and theory of nuclear science to problems con-
cerned with release, control, and utilisation of nuclear
energy and nuclear waste disposal.

Petroleum engineers require mathematics to devise
methods to improve oil and gas well production and
determine the need for new or modified tool designs;
they oversee drilling and offer technical advice to
achieve economical and satisfactory progress.

Industrial engineers require mathematics to design,
develop, test, and evaluate integrated systems for man-
aging industrial production processes, including human
work factors, quality control, inventory control, logis-
tics and material flow, cost analysis, and production
co-ordination.



Environmental engineers require mathematics to
design, plan, or perform engineering duties in the
prevention, control, and remediation of environmen-
tal health hazards, using various engineering disci-
plines; their work may include waste treatment, site
remediation, or pollution control technology.

Civil engineers require mathematics in all levels in
civil engineering – structural engineering, hydraulics
and geotechnical engineering are all fields that employ

mathematical tools such as differential equations, tensor
analysis,field theory, numericalmethods andoperations
research.

Knowledge of mathematics is therefore needed by each
of the engineering disciplines listed above.

It is intended that this text –Higher EngineeringMathe-
matics –will provide a step-by-step approach to learning
fundamental mathematics needed for your engineering
studies.
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Preface

This eighth edition of HigherEngineeringMathemat-
ics covers essential mathematical material suitable for
students studying Degrees, Foundation Degrees, and
Higher National Certificate and Diploma courses in
Engineering disciplines.
The text has been conveniently divided into the fol-

lowing fourteen convenient categories: number and
algebra, geometry and trigonometry, graphs, complex
numbers, matrices and determinants, vector geometry,
introduction to calculus, further differential calculus,
further integral calculus, further differential equations,
statistics and probability, Laplace transforms, Fourier
series and z-transforms.
Increasingly, difficulty in understanding algebra

is proving a problem for many students as they com-
mence studying engineering courses. Inevitably there
are a lot of formulae and calculations involved with
engineering studies that require a sound grasp of alge-
bra. On the website www.routledge.com/cw/bird/ is a
document which offers a quick revision of the main
areas of algebra essential for further study, i.e. basic
algebra, simple equations, transposition of formulae,
simultaneous equations and quadratic equations.
In this new edition, all of the chapters of the pre-

vious edition are included, plus one extra, but the
order of presenting some of the calculus chapters has
been changed. New material has been added on the
introduction to numbering systems, Bayes’ theorem in
probability, the comparison of numerical methods and
z-transforms.
The primary aim of the material in this text is to

provide the fundamental analytical and underpinning
knowledge and techniques needed to successfully com-
plete scientific and engineering principles modules of
Degree, Foundation Degree and Higher National Engi-
neering programmes. The material has been designed
to enable students to use techniques learned for the
analysis, modelling and solution of realistic engineering
problems at Degree and Higher National level. It also
aims to provide some of the more advanced knowl-
edge required for those wishing to pursue careers in

mechanical engineering, aeronautical engineering, elec-
trical and electronic engineering, communications engi-
neering, systems engineering and all variants of control
engineering.
In Higher Engineering Mathematics 8th Edi-

tion,theory is introduced in each chapter by a full outline
of essential definitions, formulae, laws, procedures, etc;
problem solving is extensively used to establish and
exemplify the theory. It is intended that readerswill gain
real understanding through seeing problems solved and
then through solving similar problems themselves.
Access to software packages such as Maple, Mathe-

matica andDerive, or a graphics calculator,will enhance
understanding of some of the topics in this text.
Each topic considered in the text is presented in a

way that assumes in the reader only knowledge attained
in BTEC National Certificate/Diploma, or similar, in an
Engineering discipline.
Higher Engineering Mathematics 8th Edition pro-

vides a follow-up to Engineering Mathematics 8th

Edition.
This textbook contains over 1050 worked prob-

lems, followed by nearly 2000 further problems (with
answers), arranged within 277 Practice Exercises.
Some 552 line diagrams further enhance understand-
ing.
Worked solutions to all 2000 of the further

problems have been prepared and can be accessed
free by students and staff via the website
www.routledge.com/cw/bird/
At the end of the text, a list of Essential Formulae

is included for convenience of reference.
At intervals throughout the text are some 21Revision

Tests to check understanding. For example, Revision
Test 1 covers the material in chapters 1 to 5, Revi-
sion Test 2 covers the material in chapters 6 to 8,
Revision Test 3 covers the material in chapters 9 to
11, and so on. An Instructor’s Manual, containing
full solutions to the Revision Tests, is available free to
lecturers/instructors via the website (see below).

http://www.routledge.com/cw/bird/
http://www.routledge.com/cw/bird/
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Syllabus guidance

This textbook is written for undergraduate engineering degree and foundation degree courses; however, it is
also most appropriate for BTEC levels 4 and 5 HNC/D studies in engineering and three syllabuses are covered.
The appropriate chapters for these three syllabuses are shown in the table below.

Chapter Analytical Further Advanced
Methods Analytical Mathematics
for Engineers Methods for for

Engineers Engineering
1. Algebra ×
2. Partial fractions ×
3. Logarithms ×
4. Exponential functions ×
5. Inequalities

6. Arithmetic and geometric progressions ×
7. The binomial series ×
8. Maclaurin’s series ×
9. Solving equations by iterative methods ×
10. Binary, octal and hexadecimal ×
11. Boolean algebra and logic circuits ×
12. Introduction to trigonometry ×
13. Cartesian and polar co-ordinates ×
14. The circle and its properties ×
15. Trigonometric waveforms ×
16. Hyperbolic functions ×
17. Trigonometric identities and equations ×
18. The relationship between trigonometric and hyperbolic ×

functions

19. Compound angles ×
20. Functions and their curves ×
21. Irregular areas, volumes and mean value of waveforms ×
22. Complex numbers ×
23. De Moivre’s theorem ×
24. The theory of matrices and determinants ×
25. Applications of matrices and determinants ×

(Continued )
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Chapter Analytical Further Advanced
Methods Analytical Mathematics
for Engineers Methods for for

Engineers Engineering
26. Vectors ×
27. Methods of adding alternating waveforms ×
28. Scalar and vector products ×
29. Methods of differentiation ×
30. Some applications of differentiation ×
31. Standard integration ×
32. Some applications of integration ×
33. Introduction to differential equations ×
34. Differentiation of parametric equations

35. Differentiation of implicit functions ×
36. Logarithmic differentiation ×
37. Differentiation of hyperbolic functions ×
38. Differentiation of inverse trigonometric and hyperbolic ×

functions

39. Partial differentiation ×
40. Total differential, rates of change and small changes ×
41. Maxima, minima and saddle points for functions of two ×

variables

42. Integration using algebraic substitutions ×
43. Integration using trigonometric and hyperbolic substitutions ×
44. Integration using partial fractions ×
45. The t = tan θ /2 substitution

46. Integration by parts ×
47. Reduction formulae ×
48. Double and triple integrals

49. Numerical integration ×
50. Homogeneous first-order differential equations

51. Linear first-order differential equations ×
52. Numerical methods for first-order differential equations × ×
53. Second-order differential equations of the form ×

a
d2y
dx2

+ b
dy
dx

+ cy = 0

(Continued )
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Chapter Analytical Further Advanced
Methods Analytical Mathematics
for Engineers Methods for for

Engineers Engineering
54. Second-order differential equations of the form ×

a
d2y
dx2

+ b
dy
dx

+ cy = f (x)

55. Power series methods of solving ordinary differential equations ×
56. An introduction to partial differential equations ×
57. Presentation of statistical data ×
58. Measures of central tendency and dispersion ×
59. Probability ×
60. The binomial and Poisson distributions ×
61. The normal distribution ×
62. Linear correlation ×
63. Linear regression ×
64. Sampling and estimation theories ×
65. Significance testing ×
66. Chi-square and distribution-free tests ×
67. Introduction to Laplace transforms ×
68. Properties of Laplace transforms ×
69. Inverse Laplace transforms ×
70. The Laplace transform of the Heaviside function

71. Solution of differential equations using Laplace transforms ×
72. The solution of simultaneous differential equations using ×

Laplace transforms

73. Fourier series for periodic functions of period 2π ×
74. Fourier series for non-periodic functions over range 2π ×
75. Even and odd functions and half-range Fourier series ×
76. Fourier series over any range ×
77. A numerical method of harmonic analysis ×
78. The complex or exponential form of a Fourier series ×
79. An introduction to z-transforms
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Chapter 1

Algebra

Why it is important to understand: Algebra, polynomial division and the factor and remainder theorems
It is probably true to say that there is no branch of engineering, physics, economics, chemistry or computer
science which does not require the understanding of the basic laws of algebra, the laws of indices, the
manipulation of brackets, the ability to factorise and the laws of precedence. This then leads to the ability
to solve simple, simultaneous and quadratic equations which occur so often. The study of algebra also
revolves around using and manipulating polynomials. Polynomials are used in engineering, computer
programming, software engineering, in management, and in business. Mathematicians, statisticians and
engineers of all sciences employ the use of polynomials to solve problems; among them are aerospace
engineers, chemical engineers, civil engineers, electrical engineers, environmental engineers, industrial
engineers, materials engineers, mechanical engineers and nuclear engineers. The factor and remainder
theorems are also employed in engineering software and electronic mathematical applications, through
which polynomials of higher degrees and longer arithmetic structures are dividedwithout any complexity.
The study of algebra, equations, polynomial division and the factor and remainder theorems is therefore
of some considerable importance in engineering.

At the end of this chapter, you should be able to:

• understand and apply the laws of indices
• understand brackets, factorisation and precedence
• transpose formulae and solve simple, simultaneous and quadratic equations
• divide algebraic expressions using polynomial division
• factorise expressions using the factor theorem
• use the remainder theorem to factorise algebraic expressions

1.1 Introduction

In this chapter, polynomial division and the factor
and remainder theorems are explained (in Sections 1.4
to 1.6). However, before this, some essential algebra
revision on basic laws and equations is included.
For further algebra revision, go to the website:
www.routledge.com/cw/bird

1.2 Revision of basic laws

(a) Basic operations and laws of indices
The laws of indices are:
(i) am × an = am+n (ii)

am

an
= am−n

(iii) (am)n = am×n (iv) a
m
n = n

√
am

(v) a−n = 1
an

(vi) a0 = 1

Higher Engineering Mathematics. 978-1-138-67357-1, © 2017 John Bird. Published by Taylor & Francis. All rights reserved.
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Problem 1. Evaluate 4a2bc3−2ac when a=2,
b = 1

2 and c = 1 12

4a2bc3− 2ac = 4(2)2
(
1
2

)(
3
2

)3
− 2(2)

(
3
2

)

= 4× 2× 2× 3× 3× 3
2× 2× 2× 2 − 12

2

= 27− 6= 21

Problem 2. Multiply 3x + 2y by x − y

3x + 2y
x − y

Multiply by x → 3x2+ 2xy

Multiply by −y → −3xy − 2y2

Adding gives: 3x2− xy − 2y2

Alternatively,

(3x + 2y)(x − y) = 3x2− 3xy + 2xy − 2y2

= 3x2 −xy − 2y2

Problem 3. Simplify
a3b2c4

abc−2 and evaluate when

a = 3, b = 1
8 and c = 2

a3b2c4

abc−2 = a3−1b2−1c4−(−2) = a2bc6

When a = 3, b = 1
8 and c = 2,

a2bc6 = (3)2
(
1
8

)
(2)6 = (9)

(
1
8

)
(64) = 72

Problem 4. Simplify
x2y3+ xy2

xy

x2y3+ xy2

xy
= x2y3

xy
+ xy2

xy

= x2−1y3−1+ x1−1y2−1

= xy2+ y or y(xy + 1)

Problem 5. Simplify
(x2

√
y)(

√
x 3

√
y2)

(x5y3)
1
2

(x2
√

y)(
√

x 3
√

y2)

(x5y3)
1
2

= x2y
1
2 x

1
2 y

2
3

x
5
2 y

3
2

= x2+
1
2− 5

2 y
1
2+ 2

3− 3
2

= x0y− 1
3

= y− 1
3 or

1

y
1
3
or

1
3√y

Now try the following Practice Exercise

Practice Exercise 1 Basic algebraic
operations and laws of indices (Answers
on page 856)

1. Evaluate 2ab + 3bc − abc when a = 2,
b = −2 and c = 4

2. Find the value of 5pq 2r3 when p = 2
5 ,

q = −2 and r = −1
3. From 4x − 3y + 2z subtract x + 2y − 3z.
4. Multiply 2a − 5b + c by 3a + b

5. Simplify (x2y3z)(x3yz2) and evaluate when
x = 1

2 , y = 2 and z = 3

6. Evaluate (a
3
2 bc−3)(a

1
2 b− 1

2 c) when a=3,
b = 4 and c = 2

7. Simplify
a2b + a3b

a2b2

8. Simplify
(a3b

1
2 c− 1

2 )(ab)
1
3

(
√

a3
√

bc)

(b) Brackets, factorisation and precedence

Problem 6. Simplify a2− (2a − ab) − a(3b+ a)

a2− (2a − ab) − a(3b+ a)

= a2− 2a + ab− 3ab − a2

= −2a − 2ab or −2a(1 + b)
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Problem 7. Remove the brackets and simplify the
expression:

2a − [3{2(4a − b) − 5(a + 2b)} + 4a]

Removing the innermost brackets gives:

2a − [3{8a − 2b − 5a − 10b} + 4a]

Collecting together similar terms gives:

2a − [3{3a − 12b} + 4a]

Removing the ‘curly’ brackets gives:

2a − [9a − 36b + 4a]

Collecting together similar terms gives:

2a − [13a − 36b]

Removing the square brackets gives:

2a − 13a + 36b = −11a+36b or

36b − 11a

Problem 8. Factorise (a) xy − 3xz

(b) 4a2+ 16ab3 (c) 3a2b − 6ab2+ 15ab

(a) xy − 3xz = x(y − 3z)

(b) 4a2+ 16ab3 = 4a(a + 4b3)

(c) 3a2b − 6ab2+ 15ab = 3ab(a − 2b + 5)

Problem 9. Simplify 3c + 2c × 4c + c ÷ 5c − 8c

The order of precedence is division, multiplication,
addition, and subtraction (sometimes remembered
by BODMAS). Hence

3c + 2c × 4c + c ÷ 5c − 8c
= 3c + 2c × 4c +

( c

5c

)
− 8c

= 3c + 8c2+ 1
5

− 8c

= 8c2− 5c + 1
5
or c(8c − 5)+ 1

5

Problem 10. Simplify
(2a − 3)÷4a+5× 6−3a

(2a − 3)÷4a + 5× 6− 3a

= 2a − 3
4a

+ 5× 6− 3a

= 2a − 3
4a

+ 30− 3a

= 2a
4a

− 3
4a

+ 30− 3a

= 1
2

− 3
4a

+ 30− 3a = 30 1
2

− 3
4a

− 3a

Now try the following Practice Exercise

Practice Exercise 2 Brackets, factorisation
and precedence (Answers on page 856)

1. Simplify 2(p + 3q − r) − 4(r − q + 2p) + p

2. Expand and simplify (x + y)(x − 2y)

3. Remove the brackets and simplify:

24p − [2{3(5p − q) − 2(p + 2q)} + 3q]
4. Factorise 21a2b2− 28ab

5. Factorise 2xy2+ 6x2y + 8x3y
6. Simplify 2y + 4÷ 6y + 3× 4− 5y
7. Simplify 3÷ y + 2÷ y − 1
8. Simplify a2− 3ab × 2a ÷ 6b + ab

1.3 Revision of equations

(a) Simple equations

Problem 11. Solve 4− 3x = 2x − 11

Since 4− 3x = 2x − 11 then 4+ 11= 2x + 3x
i.e. 15= 5x from which, x= 15

5
= 3

Problem 12. Solve

4(2a − 3) − 2(a − 4) = 3(a − 3) − 1
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Removing the brackets gives:

8a − 12− 2a + 8= 3a − 9− 1
Rearranging gives:

8a − 2a − 3a= −9− 1+ 12− 8
i.e. 3a= −6
and a = −6

3
= −2

Problem 13. Solve
3

x − 2 = 4
3x + 4

By ‘cross-multiplying’: 3(3x + 4)= 4(x − 2)
Removing brackets gives: 9x + 12= 4x − 8
Rearranging gives: 9x − 4x = −8− 12
i.e. 5x = −20

and x = −20
5

= −4

Problem 14. Solve
(√

t + 3√
t

)

= 2

√
t

(√
t + 3√

t

)

= 2√t

i.e.
√

t + 3= 2√t

and 3= 2√t − √
t

i.e. 3= √
t

and 9= t

(c) Transposition of formulae

Problem 15. Transpose the formula v= u + f t

m
to make f the subject.

u+ f t

m
= v from which, f t

m
= v− u

and m

(
f t

m

)

= m(v− u)

i.e. f t = m(v− u)

and f = m

t
(v − u)

Problem 16. The impedance of an a.c. circuit is
given by Z = √

R2+ X2. Make the reactanceX the
subject.

√
R2 + X2 = Z and squaring both sides gives

R2 + X2 = Z2, from which,

X2 = Z2− R2 and reactanceX =
√

Z2−R2

Problem 17. Given that
D

d
=

√(
f + p

f − p

)

express p in terms ofD, d and f.

Rearranging gives:

√(
f + p

f − p

)

= D

d

Squaring both sides gives:
f + p

f − p
= D2

d2

‘Cross-multiplying’ gives:

d2(f + p)= D2(f − p)

Removing brackets gives:

d2f + d2p= D2f − D2p

Rearranging gives: d 2p + D2p= D2f − d2f

Factorising gives: p(d2+ D2)= f (D2 − d2)

and p= f (D2−d2)
(d2+D2)

Now try the following Practice Exercise

Practice Exercise 3 Simple equations
and transposition of formulae (Answers
on page 856)

In problems 1 to 4 solve the equations

1. 3x − 2− 5x = 2x − 4
2. 8+ 4(x − 1) − 5(x − 3) = 2(5− 2x)

3.
1

3a − 2 + 1
5a + 3 = 0

4.
3
√

t

1− √
t

= −6

5. Transpose y = 3(F − f )

L
for f



Se
ct

io
n

A

Algebra 7

6. Make l the subject of t = 2π
√

l

g

7. Transposem = μL

L+ rCR
for L

8. Make r the subject of the formula
x

y
= 1+ r2

1− r2

(d) Simultaneous equations

Problem 18. Solve the simultaneous equations:
7x − 2y = 26 (1)

6x + 5y = 29 (2)

5×equation (1) gives:
35x − 10y = 130 (3)

2×equation (2) gives:
12x + 10y = 58 (4)

Equation (3)+equation (4) gives:
47x + 0 = 188

from which, x = 188
47

= 4
Substituting x = 4 in equation (1) gives:

28− 2y = 26
from which, 28− 26= 2y and y =1

Problem 19. Solve
x

8
+ 5
2

= y (1)

11+ y

3
= 3x (2)

8×equation (1) gives: x + 20= 8y (3)

3×equation (2) gives: 33+ y = 9x (4)

i.e. x − 8y = −20 (5)
and 9x − y = 33 (6)

8×equation (6) gives: 72x − 8y = 264 (7)

Equation (7)− equation (5) gives:
71x = 284

from which, x= 284
71

= 4

Substituting x = 4 in equation (5) gives:
4− 8y = −20

from which, 4+ 20 = 8y and y = 3

(e) Quadratic equations

Problem 20. Solve the following equations by
factorisation:
(a) 3x2− 11x − 4= 0
(b) 4x2+ 8x + 3= 0

(a) The factors of 3x 2 are 3x and x and these are placed
in brackets thus:

(3x )(x )

The factors of −4 are +1 and −4 or −1 and
+4, or −2 and +2. Remembering that the prod-
uct of the two inner terms added to the product
of the two outer terms must equal −11x, the only
combination to give this is +1 and −4, i.e.,

3x2− 11x − 4= (3x + 1)(x − 4)
Thus (3x + 1)(x − 4)= 0 hence

either (3x + 1)= 0 i.e. x = − 1
3

or (x − 4)= 0 i.e. x = 4

(b) 4x2+ 8x + 3= (2x + 3)(2x + 1)
Thus (2x + 3)(2x + 1)= 0 hence

either (2x + 3)= 0 i.e. x =− 3
2

or (2x + 1)= 0 i.e. x = − 1
2

Problem 21. The roots of a quadratic equation
are 13 and−2. Determine the equation in x.

If
1
3
and−2 are the roots of a quadratic equation then,

(x − 1
3
)(x + 2)= 0

i.e. x2+ 2x − 1
3
x − 2

3
= 0

i.e. x2+ 5
3
x − 2

3
= 0

or 3x2 + 5x−2= 0

Problem 22. Solve 4x2+ 7x + 2= 0 giving the
answer correct to 2 decimal places.
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From the quadratic formula if ax 2+ bx + c = 0 then,

x = −b ± √
b2− 4ac

2a

Hence if 4x2+ 7x + 2= 0

then x = −7±
√
72− 4(4)(2)
2(4)

= −7± √
17

8

= −7± 4.123
8

= −7+ 4.123
8

or
−7− 4.123

8
i.e. x= −0.36 or −1.39

Now try the following Practice Exercise

Practice Exercise 4 Simultaneous and
quadratic equations (Answers on page 856)

In problems 1 to 3, solve the simultaneous equa-
tions

1. 8x − 3y = 51
3x + 4y = 14

2. 5a = 1− 3b
2b + a + 4= 0

3.
x

5
+ 2y
3

= 49
15

3x
7

− y

2
+ 5
7

= 0
4. Solve the following quadratic equations by

factorisation:

(a) x2+ 4x − 32= 0
(b) 8x2+ 2x − 15= 0

5. Determine the quadratic equation in x whose
roots are 2 and −5

6. Solve the following quadratic equations, cor-
rect to 3 decimal places:

(a) 2x2+ 5x − 4= 0
(b) 4t2 − 11t + 3= 0

1.4 Polynomial division

Before looking at long division in algebra let us revise
long division with numbers (we may have forgotten,
since calculators do the job for us!).

For example,
208
16

is achieved as follows:

13——–
16

)
208
16

48
48
—· ·
—

(1) 16 divided into 2 won’t go

(2) 16 divided into 20 goes 1

(3) Put 1 above the zero

(4) Multiply 16 by 1 giving 16

(5) Subtract 16 from 20 giving 4

(6) Bring down the 8

(7) 16 divided into 48 goes 3 times

(8) Put the 3 above the 8

(9) 3× 16= 48
(10) 48− 48= 0

Hence
208
16

= 13 exactly

Similarly,
172
15

is laid out as follows:

11——–
15

)
172
15

22
15
—
7
—

Hence
172
15

= 11 remainder 7 or 11+ 7
15

= 11 7
15

Below are some examples of division in algebra, which
in some respects is similar to long division with num-
bers.
(Note that a polynomial is an expression of the form

f (x) = a + bx + cx2+ dx3+ ·· ·
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and polynomial division is sometimes required when
resolving into partial fractions – see Chapter 2.)

Problem 23. Divide 2x2+ x − 3 by x − 1

2x2+ x − 3 is called the dividend and x − 1 the divi-
sor. The usual layout is shown below with the dividend
and divisor both arranged in descending powers of the
symbols.

2x + 3——————–
x − 1

)
2x2+ x − 3
2x2− 2x

3x − 3
3x − 3
———· ·
———

Dividing the first term of the dividend by the first term

of the divisor, i.e.
2x2

x
gives 2x, which is put above

the first term of the dividend as shown. The divisor
is then multiplied by 2x, i.e. 2x(x−1)= 2x 2−2x,
which is placed under the dividend as shown. Subtract-
ing gives 3x −3. The process is then repeated, i.e. the
first term of the divisor, x, is divided into 3x, giving
+3, which is placed above the dividend as shown. Then
3(x −1)=3x−3, which is placed under the 3x −3. The
remainder, on subtraction, is zero, which completes the
process.

Thus (2x2+x −3) ÷ (x − 1)= (2x + 3)

[A check can be made on this answer by multiplying
(2x + 3) by (x − 1) which equals 2x 2+ x − 3.]

Problem 24. Divide 3x3+ x2+ 3x + 5 by x + 1

(1) (4) (7)
3x2− 2x + 5—————————

x + 1
)
3x3+ x2+ 3x + 5
3x3+ 3x2

−2x2+ 3x + 5
−2x2− 2x
————–

5x + 5
5x + 5
———

· ·
———

(1) x into 3x3 goes 3x2. Put 3x2 above 3x3

(2) 3x2(x + 1) = 3x3+ 3x2
(3) Subtract

(4) x into −2x2 goes −2x. Put −2x above the
dividend

(5) −2x(x + 1) = −2x2− 2x
(6) Subtract

(7) x into 5x goes 5. Put 5 above the dividend

(8) 5(x + 1) = 5x + 5
(9) Subtract

Thus 3x3+ x2+ 3x + 5
x + 1 = 3x2 − 2x + 5

Problem 25. Simplify
x3+ y3

x + y

(1) (4) (7)
x2− xy + y2—————————–

x + y

)
x3+ 0 + 0 + y3

x3+ x2y

−x2y + y3

−x2y − xy2
———————

xy2+ y3

xy2+ y3
———–· ·
———–

(1) x into x3 goes x2. Put x2 above x3 of dividend

(2) x2(x + y) = x3+ x2y

(3) Subtract

(4) x into −x2y goes −xy. Put −xy above dividend

(5) −xy(x + y) = −x2y − xy2

(6) Subtract

(7) x into xy2 goes y2. Put y2 above dividend

(8) y2(x + y) = xy2+ y3

(9) Subtract

Thus

x3+ y3

x + y
= x2 − xy + y2
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The zeros shown in the dividend are not normally shown,
but are included to clarify the subtraction process and
to keep similar terms in their respective columns.

Problem 26. Divide (x2+ 3x − 2) by (x − 2)

x + 5——————–
x − 2

)
x2+ 3x − 2
x2− 2x

5x − 2
5x − 10
———

8
———

Hence

x2+ 3x − 2
x − 2 = x + 5 + 8

x − 2

Problem 27. Divide 4a3− 6a2b + 5b3 by
2a − b

2a2− 2ab − b2———————————
2a − b

)
4a3− 6a2b + 5b3
4a3− 2a2b

−4a2b + 5b3
−4a2b + 2ab2
————−2ab2 + 5b3

−2ab2 + b3
—————–

4b3
—————–

Thus

4a3− 6a2b + 5b3
2a − b

=2a2 − 2ab − b2 + 4b3

2a − b

Now try the following Practice Exercise

Practice Exercise 5 Polynomial division
(Answers on page 856)

1. Divide (2x2+ xy − y2) by (x + y)

2. Divide (3x2+ 5x − 2) by (x + 2)
3. Determine (10x2+ 11x − 6) ÷ (2x + 3)

4. Find
14x2− 19x − 3

2x − 3

5. Divide (x3+ 3x2y + 3xy2+ y3) by (x + y)

6. Find (5x2− x + 4) ÷ (x − 1)
7. Divide (3x3+ 2x2− 5x + 4) by (x + 2)
8. Determine (5x4+ 3x3− 2x + 1)/(x − 3)

1.5 The factor theorem

There is a simple relationship between the factors of
a quadratic expression and the roots of the equation
obtained by equating the expression to zero.
For example, consider the quadratic equation
x2+ 2x − 8= 0
To solve this we may factorise the quadratic expression
x2+ 2x − 8 giving (x − 2)(x + 4)
Hence (x − 2)(x + 4) = 0
Then, if the product of two numbers is zero, one or both
of those numbers must equal zero. Therefore,
either (x − 2) = 0, from which, x = 2
or (x + 4) = 0, from which, x = −4
It is clear, then, that a factor of (x − 2) indicates a root
of +2, while a factor of (x + 4) indicates a root of−4
In general, we can therefore say that:

a factor of (x − a) corresponds to a
root of x = a

In practice, we always deduce the roots of a simple
quadratic equation from the factors of the quadratic
expression, as in the above example.However,we could
reverse this process. If, by trial and error, we could deter-
mine that x = 2 is a root of the equation x 2+ 2x − 8= 0
we could deduce at once that (x − 2) is a factor of the
expression x2+ 2x − 8. We wouldn’t normally solve
quadratic equations this way – but suppose we have
to factorise a cubic expression (i.e. one in which the
highest power of the variable is 3). A cubic equation
might have three simple linear factors and the difficulty
of discovering all these factors by trial and error would
be considerable. It is to deal with this kind of case that
we use the factor theorem. This is just a generalised
version of what we established above for the quadratic
expression. The factor theorem provides a method of
factorising any polynomial, f (x), which has simple
factors.
A statement of the factor theorem says:
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‘if x = a is a root of the equation
f (x) = 0, then (x − a) is a factor of f (x)’

The following worked problems show the use of the
factor theorem.

Problem 28. Factorise x3− 7x − 6 and use it to
solve the cubic equation x 3− 7x − 6= 0.

Let f (x) = x3− 7x − 6
If x = 1, then f (1) = 13− 7(1) − 6= −12
If x = 2, then f (2) = 23− 7(2) − 6= −12
If x = 3, then f (3) = 33− 7(3) − 6= 0
If f (3) = 0, then (x − 3) is a factor – from the factor
theorem.
We have a choice now. We can divide x 3−7x−6 by
(x − 3) or we could continue our ‘trial and error’ by
substituting further values forx in the given expression –
and hope to arrive at f (x)=0
Let us do both ways. Firstly, dividing out gives:

x2+ 3x + 2—————————
x − 3

)
x3− 0 − 7x − 6
x3− 3x2

3x2− 7x − 6
3x2− 9x
————

2x − 6
2x − 6
———· ·
———

Hence
x3− 7x − 6

x − 3 = x2+ 3x + 2

i.e. x3− 7x − 6= (x − 3)(x2+ 3x + 2)
x2+ 3x + 2 factorises ‘on sight’ as (x + 1)(x + 2).
Therefore

x3 − 7x − 6 = (x − 3)(x + 1)(x + 2)
A second method is to continue to substitute values of
x into f (x).
Our expression for f (3) was 33− 7(3) − 6. We can
see that if we continue with positive values of x the
first term will predominate such that f (x) will not
be zero.
Therefore let us try some negative values for x.
Therefore f (−1) = (−1)3− 7(−1) − 6= 0; hence
(x + 1) is a factor (as shown above). Also
f (−2) = (−2)3− 7(−2) − 6= 0; hence (x + 2) is
a factor (also as shown above).

To solve x3− 7x − 6= 0, we substitute the factors, i.e.
(x − 3)(x + 1)(x + 2) = 0

from which, x = 3, x = −1 and x = −2
Note that the values of x, i.e. 3, −1 and −2, are
all factors of the constant term, i.e. 6. This can
give us a clue as to what values of x we should
consider.

Problem 29. Solve the cubic equation
x3−2x2− 5x + 6=0 by using the factor theorem.

Let f (x) = x3− 2x2− 5x + 6 and let us substitute
simple values of x like 1, 2, 3, −1, −2, and so on.

f (1) = 13− 2(1)2− 5(1) + 6= 0,
hence (x − 1) is a factor

f (2) = 23− 2(2)2− 5(2) + 6 �= 0
f (3) = 33− 2(3)2− 5(3) + 6= 0,

hence (x − 3) is a factor
f (−1) = (−1)3− 2(−1)2− 5(−1) + 6 �= 0
f (−2) = (−2)3− 2(−2)2− 5(−2) + 6= 0,

hence (x + 2) is a factor
Hence x3− 2x2− 5x + 6= (x − 1)(x − 3)(x + 2)
Therefore if x3− 2x2− 5x + 6= 0
then (x − 1)(x − 3)(x + 2) = 0
from which, x = 1, x = 3 and x = −2
Alternatively, having obtained one factor, i.e.
(x − 1) we could divide this into (x 3− 2x2− 5x + 6)
as follows:

x2− x − 6————————–
x − 1

)
x3− 2x2 − 5x + 6
x3− x2

− x2 − 5x + 6
− x2 + x
————–− 6x + 6

− 6x + 6
———–· ·
———–

Hence x3 − 2x2− 5x + 6
= (x − 1)(x2− x − 6)
= (x − 1)(x − 3)(x + 2)




